TY - BOOK AU - Syxtus Gaal PY - 2013 CY - Hamburg, Deutschland PB - BACHELOR + MASTER PUBLISHING SN - 9783863416423 TI - Automatisierte Erstellung neuer Sprachkorpora: Ein Beispiel anhand des Lëtzebuergeschen UR - https://m.bachelor-master-publishing.de/document/296540 N2 - Sprachtechnologien, einmal ein Thema für theoretische Forschung und Science-Fiction-Filme, sind Alltag geworden. Dank stetig steigender Rechenleistung und jahrzehntelangem Forschungsaufwand kann man heute Sprachsteuerung vielfältig einsetzen - beim Autofahren, Telefonieren, Surfen und Arbeiten. Hinter dieser ausgereiften Technologie steckt viel Arbeitsaufwand. Um Spracherkennung und Sprachsynthese, also die künstliche Erzeugung einer Stimme, möglich zu machen, müssen große Mengen von Sprachdaten analysiert und verarbeitet werden. Forscher und Entwickler verwenden diese Daten, um ihrer Computersoftware beizubringen, einen Begriff zu erkennen oder richtig auszusprechen. Sprachtechnologien stehen und fallen mit der Menge guter Sprachdaten. Diese bestehen nicht nur aus reinen Aufnahmen; sie können auch Informationen über die einzelnen Phoneme, Silben und Wörter beinhalten. Sie beschreiben, wo jeder Laut anfängt und aufhört, welche Wortteile verwendet wurden und wie die Wörter, Phrasen und Sätze akzentuiert sind. Alle diese Informationen müssen für jeden Laut, jede Silbe, jedes Wort und jeden Satz vorhanden sein. Die Bereitstellung solcher annotierten Sprachdaten ist ein gewaltiger Aufwand. Gebildete Fachkräfte müssen zwischen 30 Minuten und einer Stunde Zeit opfern um eine Minute der Sprachaufnahmen zu bearbeiten. Oft sind dutzende oder hunderte Stunden solcher bearbeiteter Sprachaufnahmen notwendig, um ein ausgereiftes Spracherkennungs- oder Sprachsynthesesystem zu entwickeln. Wenn man bedenkt, dass die Zeit der notwendigen manuellen Bearbeitung mit 30 bzw. 60 multipliziert werden muss, so ist ein hoher Kostenfaktor erkennbar. Dieser Faktor lässt sich für große Sprachen rechtfertigen, da die Endsysteme für eine große Benutzergruppe zur Verfügung stehen werden. Bei kleineren Sprachen ist der Entwicklungsaufwand genau so groß, da die Zielgruppe jedoch viel kleiner ist, kann er oft nicht gerechtfertigt werden. So führt es dazu, dass kleinere Sprachen oft bei der Entwicklung moderner Technologien benachteiligt werden. Diese Arbeit zeigt, wie man die Bearbeitung der Sprachdaten automatisieren kann um so den manuellen Bearbeitungsaufwand zu senken. Ziel ist es Sprachdaten, auch Sprachkorpora genannt, für kleinere Sprachen einfach und günstig verfügbar zu machen. Dabei soll ein Aligner etnwickelt werden, ein Programm, das Sprachaufnahmen und deren Transkription analysiert und den Lauten, Silben und Wörtern Zeitstempel zuweist. Die Zeitstempel müssen lediglich […] KW - Spracherkennung, Phonetik, Lëtzebuergesch, Computerlinguistik, Hidden-Markov-Modelle LA - Deutsch ER -